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Quantization of Higher-Order Constrained
Lagrangian Systems Using the WKB
Approximation

Eyad H. Hasan,1,3 Eqab M. Rabei,2 and Humam B. Ghassib1

A general theory is given for solving the Hamilton–Jacobi partial differential equations
(HJPDEs) for both constrained and unconstrained systems with arbitrarily higher-order
Lagrangians. The Hamilton–Jacobi function is obtained for both types of systems by
solving the appropriate set of HJPDEs. This is used to determine the solutions of the
equations of motion. The quantization of both systems is then achieved using the WKB
approximation. In constrained systems, the constraints become conditions on the wave
function to be satisfied in the semiclassical limit.
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1. INTRODUCTION

Although most physical systems can be described by Lagrangians that depend
at most on the first derivatives of the dynamical variables (Sudershan and Mukunda,
1974; Dirac, 1950, 1964), there is a continuing interest in the so-called general-
ized dynamics; that is, the study of physical systems described by Lagrangians
containing derivatives of order higher than one.

Theories associated with higher-order regular Lagrangians were first devel-
oped by Ostrogradski (1850). These led to Euler’s and Hamilton’s equations of
motion.

A new formalism for investigating first-order singular systems—the
canonical—was developed by Rabei and Guler (1992). These authors obtained
a set of Hamilton–Jacobi partial differential equations for such systems using
Caratheodory’s (1967) equivalent Lagrangian method. Recently the formalism
was extended to second- and higher-order Lagrangians (Pimentel and Teixeira,
1996, 1998).
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The quantization of constrained systems has been studied for first-order
singular Lagrangians using the WKB approximation (Rabei et al., 2002). The
HJPDEs for these systems have been constructed using the canonical method. The
Hamilton–Jacobi functions have then been obtained by solving these equations.

The aim of this paper is to study the quantization of singular systems with
arbitrarily higher-order Lagrangians using the WKB approximation.

The paper is organized as follows. In Section 2, the Hamilton–Jacobi for-
mulation is reviewed briefly for both constrained and unconstrained systems with
higher-order Lagrangians. A generalized method is proposed for determining the
Hamilton–Jacobi function for both types of systems. The equations of motion are
then derived from this function. In Section 3, the WKB approximation for both
types of systems is introduced. The work closes with some concluding remarks in
Section 5.

2. HAMILTON–JACOBI FORMULATION
FOR HIGHER-ORDER LAGRANGIANS

The starting point is a system described by a Lagrangian dependent on up to
the Kth derivative of N generalized coordinates qi ; i.e.,

L ≡ L
(
qi , q̇i , . . . ,

(K )
qi

)
; q(s)i = (s)

qi = dsqi

dts
, (2.1)

where s = 0, 1, . . . , K and i = 1, . . . , N . For such systems the Euler–Lagrange
equations of motion are obtained through Hamilton’s principle of stationary action:

K∑
s=0

(−1)s ds

dts


 ∂L

∂
(s)
q i


 = 0. (2.2)

This is a system of N differential equations of 2Kth order; so we need 2KN initial
conditions to solve it. These conditions are the initial values of qi , q̇i , . . . ,

(2K−1)
qi

that describe the velocity phase space (VPS).
The Hamiltonian formalism for theories with higher-order derivatives, first

developed by Ostrogradski (1850), treats the derivatives
(s)
qi (s = 0, . . . , K − 1) as

coordinates. We will indicate this by writing them as
(s)
qi ≡ q(s)i . In Ostrogradski’s

formalism the momenta conjugated, respectively, to
(K−1)

qi and
(s−1)
qi (s = 1, . . . ,

K − 1) are introduced as

p(K−1)i ≡ ∂L

∂
(K )
qi

; (2.3a)

p(s−1)i ≡ ∂L

∂
(s)
qi

− ṗ(s)i , (s = 1, . . . , K − 1). (2.3b)
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Clearly, the momenta p(s)i (s ≥ 0) will only be dependent on the derivatives up to
(2K−1−s)

qi .
The Hamiltonian is defined as

H =
K−1∑
s=0

p(s)i
(s+1)
qi −L

(
qi , . . . ,

(K )
qi

)
; (2.4)

here and throughout the paper we use Einstein’s summation rule for repeated
indices.

Hamilton’s equations of motion can be written as

q̇(s)i = ∂ H

∂p(s)i
= {q(s)i , H}; (2.5)

ṗ(s)i = − ∂ H

∂q(s)i
= {p(s)i , H}. (2.6)

where {,} is the Poisson bracket defined as

{A, B} ≡
K−1∑
s=0

∂ A

∂q(s)i

∂ B

∂p(s)i
− ∂ B

∂q(s)i

∂ A

∂p(s)i
. (2.7)

The fundemental Poisson brackets are{
q(s)i , p(s ′) j

} = δss ′δi j ;
{
q(s)i , q(s ′) j

} = {
p(s)i , p(s ′) j

} = 0, (2.8)

where i, j = 1, . . . , N and s, s ′ = 0, . . . , K − 1. With this procedure the phase
space (PS) is described in terms of the canonical variables q(s)i and p(s)i

(i = 1, . . . , N and s = 0, . . . , K − 1) obeying 2KN equations of motion given
by Equations (2.5) and (2.6), which are first-order differential equations.

However, this transformation from (VPS) to (PS) is possible only if we can
solve the momenta expression, Equation (2.3), with recpect to the derivatives
(K )
qi , . . . ,

(2K−1)
qi ; so that these can be expressed as functions of the canonical variables

and eliminated from the theory.
Prior to this, we will give a brief review of Caratheodory’s (1967) equivalent

Lagrangian method to extend the Hamilton–Jacobi formalism to a general higher-
order Lagrangian (Pimentel and Teixeira, 1998). This formalism can be applied to
any higher-order Lagrangian and is not limited to singular cases.

Let us consider a Lagrangian L(qi , q̇i , . . . ,
(K )
qi , t). One can obtain a com-

pletely equivalent Lagrangian by introducing

L ′ = L
(
qi , . . . ,

(K )
q i , t

) −
d S(qi , . . . , q(

K−1)i
, t

)
dt

, (2.9)
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such that the auxiliary function S(qi , . . . , q(K−1)i , t) must satisfy

∂S

∂t
= −H0, (2.10)

where H0 is defined as the usual Hamiltonian:

H0 =
K−1∑
s=0

p(s)i
(s+1)
qi −L

(
qi , . . . ,

(K )
qi

)
; (2.11)

and the momenta p(u)i are given by

p(s)i = ∂S

∂q(s)i
, s = 0, . . . , K − 1. (2.12)

These are the fundamental equations of the equivalent Lagrangian method; Equa-
tion (2.10) is the relevant Hamilton–Jacobi partial differential equation.

Now the extended Hessian matrix is defined as

Ai j = ∂2L

∂
(K )
qi ∂

(K )
q j

. (2.13)

For a regular system, the Hessian matrix has rank N and the canonical coor-
dinates are independent. For the singular Lagrangian case, the Hessian matrix has
rank N−R, R<N. In this case R of the momenta are dependent. The generalized
momenta conjugate to the generalized coordinates q(K−1)i are defined as

p(K−1)a = ∂L

∂
(K )
qa

, a = R + 1, . . . , N ; (2.14)

p(K−1)µ = ∂L

∂
(K )
qµ

, µ = 1, . . . , R. (2.15)

Since the rank of the Hessian matrix is N−R, one can solve Equation (2.14)
for q(K−1)µ as functions of q(s)i ,p(K−1)a and

(K )
qµ as follows:

(K )
qa = w(K )a

(
q(s)i , p(K−1)a ,

(K )
qµ

)
. (2.16)

Substituting Equation (2.16) into (2.15), one gets

p(K−1)µ = ∂L

∂
(K )
qµ

∣∣∣∣∣∣(K )
qa =w(K )a

(
q(s)i , p(K−1)a ,

(K )
qµ

) ; (2.17a)

or

p(s)µ = −H(s)µ

(
t , q(u) j , p(u)a = ∂S

∂q(u)a

)
; u, s = 0, . . . , K − 1,
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j = 1, . . . , N , (2.17b)

which are called primary constraints (Dirac, 1964; Ostrogradski, 1850).
The coordinates t are replaced as t(s)0 ≡ q(s)0 (for any value of s); and the

coordinates t(s)µ will be called q(s)µ. Further, we write p(s)0 ≡ ∂S
∂t , and H(s)0 ≡ H0

for any value of s. The canonical Hamiltonian H0 can then be written as

H0 =
K−2∑
u=0

p(u)a
(u+1)
qa +p(K−1)aw(K )a +

K−1∑
u=0

(u+1)
qµ

× p(u)µ|p(s)υ=H(s)υ − L
(
q(s)i , . . . ,

(K )
qµ,

(K )
qa = w(K )a

)
;

µ, υ = 1, . . . , R; a = R + 1, . . . , N . (2.18)

The canonical method leads to the following set of HJPDEs:

H ′
0 = H ′

(s)0 = P(s)0 + H(s)0 = P(s)0

+H(s)0

(
t , q(u)µ; q(u)a , p(u)a = ∂S

∂q(u)a

)
= 0; (2.19a)

H ′
(s)µ = p(s)µ + H(s)µ = p(s)µ + H(s)µ

(
q(u)µ; q(u)a , p(u)a = ∂S

∂q(u)a

)
= 0;

× u, s = 0, . . . , K − 1; µ = 1, . . . , R; (2.19b)

or

H ′
(s)α = p(s)α + H(s)α = p(s)α + H(s)α

(
q(u)β ; q(u)a , p(u)a = ∂S

∂q(u)a

)
= 0;

α, β = 0, 1, . . . , R. (2.19c)

The equations of motion are written as total differential equations in many variables
as follows:

dq(u)i =
K−1∑
s=0

∂ H ′
(s)α

∂p(u)i
dt(s)α; (2.20a)

dp(u)i = −
K−1∑
s=0

∂ H ′
(s)α

∂q(u)i
dt(s)α; (2.20b)

The set of Equations (2.20) is integrable (Rabei and Guler, 1992; Pimentel and
Teixeira, 1998) if and only if

dH ′
(s)α ≡ 0, α = 0, 1, . . . , R, s = 0, . . . , K − 1; (2.21)

or it leads to new secondary constraints (Dirac, 1950, 1964). In the case of new con-
straints, one should consider their total variations also. Repeating this procedure,
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one may then obtain a set of constraints such that all the total variations vanish.
Simultaneous solutions of canonical equations with all these constraints provide
the solutions of a singular system.

2.1. Determination of the Hamilton–Jacobi Function
for Higher-Order Lagrangians

2.1.1. Unconstrained Systems

Under certain conditions it is possible to separate the variables in the
Hamilton–Jacobi equations, and the solution can then always be reduced to quadra-
tures (Goldstein, 1980; Arnold, 1989; Brack and Bhaduri, 1997). In practice, the
Hamilton–Jacobi technique becomes a useful computational tool only when such
a separation can be effected. In general, coordinates q(s)i are said to be separable
in the Hamilton–Jacobi equations when Hamilton’s principal function can be split
into two additive parts: one that depends only on the generalized coordinates q(s)i ,
and another that is entirely independent of these derivatives.

In the cases to which we shall apply the method of separation of variables,
the Hamiltonian will be time-independent. If we then restrict our considerations to
such Hamiltonians, the Hamilton–Jacobi equation for higher-order unconstrained
systems will be

∂S
(
q(s)i , t

)
∂t

+ H0

(
q(s)i , p(s)i = ∂S

∂q(s)i

)
= 0, i = 1, . . . , N ,

s = 0, . . . , K − 1. (2.22)

We shall first try to find a solution that can be written in separable form:

S
(
q(s)i , t

) =
K−1∑
s=0

W(s)i
(
q(s)i

) + f (t). (2.23)

Substituting this into Equation (2.22), we get

d f

dt
= −H0

(
q(s)i , p(s)i = ∂S

∂q(s)i

)
. (2.24)

The left-hand side depends only on t; whereas the right-hand side depends only on
the Kth derivatives of the generalized coordinates q(s)i ; therefore, each side must
be equal to a constant independent of q(s)i and t. Let this constant be −E(K−1). We
then have

f (t) = −E(K−1)t = −
N∑

i=1

E(K−1)i t ,
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where E(K−1) =
N∑

i=1
E(K−1)i . We can then write the Hamilton–Jacobi function

S(q(s)i , t) =
K−1∑
s=0

W(s)i
(
q(s)i

) − E(K−1)t , (2.25)

and the following equation for W(s ) (s is just the numbers: s = 0, . . . , K − 1):

H0

(
q(s)i , p(s)i = ∂S

∂q(s)i

)
= E(K−1), (2.26)

This shows that, for time-independent Hamiltonians, we can always separate out
the time. We can proceed further using the method of separation of variables only
if Equation (2.26) is similarly separable in each of the q(s)i ; that is, if a solution
can be written in the form

W =
∑

i

[
K−1∑
s=0

W(s)i
(
q(s)i , E(s)i

)]
, i = 1, . . . , N . (2.27)

Once we have found the Hamilton–Jacobi function S, the equations of motion
can be obtained by using the so-called canonical transformations (Goldstein, 1980;
Arnold, 1989), as follows:

λ(s)i = ∂S

∂ E(s)i
; (2.28a)

p(s)i = ∂S

∂q(s)i
, s = 0, . . . , K − 1, (2.28b)

where λ(s)i are constants and can be determined from the initial conditions.
One can finally solve Equations (2.28) to get

q(s)i = q(s)i
(
λ(s)i , E(s)i , t

)
; (2.29a)

p(s)i = p(s)i
(
λ(s)i , E(s)i , t

)
. (2.29b)

2.1.2. Constrained Systems

In this case, instead of considering the Hamilton–Jacobi equation (2.10),
we shall be dealing with a set of HJPDEs; Equations (2.19c). If we have the
same conditions for separable coordinates and follow the same procedure just
discussed, we can extend this method to constrained systems. Moreover, because
of the singular nature of the dynamical Lagrangians, we should split the q(s)i

coordinates of the system into those corresponding to independent momenta, q(s)a ,
and others corresponding to dependent momenta, q(s)µ. Thus, we can guess a
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general solution for Equations (2.22) in the form

S
(
q(s)a , q(s)µ, t

) = f (t) +
K−1∑
s=0

[
W(s)a

(
q(s)a , E(s)a

) + f(s)µ
(
q(s)µ

)] + A, (2.30)

where f (t) = −E(K−1)t = − ∑N−R
a=1 E(K−1)at . Here q(s)µ are treated as indepen-

dent variables, just as the time t.
Once we have found the Hamilton–Jacobi function S, the equations of motion

can be obtained in the manner of regular systems, using the so-called canonical
transformations (Goldstein, 1980; Arnold, 1989), as follows:

λ(s)a = ∂S
∂E(s)a

; (2.31a)

p(s)i = ∂S

∂q(s)i
; s = 0, . . . , K − 1, (2.31b)

where λ(s)a are constants and can be determined from the initial conditions.
One can solve Equations (2.31) to get

q(s)a = q(s)a
(
λ(s)a , E(s)a , q(s)µ, t

)
; (2.32b)

p(s)i = p(s)i
(
λ(s)a , E(s)a , q(s)µ, t

)
. (2.32c)

From the initial conditions, one can then determine the constants λ(s)a .
To this end, further insight into the physical significance of S(qi , . . . ,

q(K−1)i , t) is gained by an examination of its total time derivative:

dS

dt
=

(K−1)∑
s=0

(
∂S

∂q(s)a
q(s+1)a + ∂S

∂q(s)µ
q(s+1)µ

)
+ ∂S

∂t
(2.33a)

dS

dt
=

(K−1)∑
s=0

(
p(s)aq(s+1)a + p(s)µq(s+1)µ

) − H0 = L . (2.33b)

Thus, Hamilton’s principal function differs from the time integral of the Lagrangian
only by a constant:

S =
∫

Ldt + constant. (2.34)

In actual caculations, however, one cannot find S in terms of time directly
from this integral unless q(s)i and p(s)i are known as functions of time.

3. QUANTIZATION USING THE WKB APPROXIMATION

It is well known that the H–J equation for first-order unconstrained Lagrangian
systems leads naturally to a semiclassical approximation, namely, WKB, that is
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very successful in integrable problems. Recently it has been shown (Rabei et al.,
2002) that this approximation is equally applicable to first-order constrained La-
grangian systems. We shall see that this is also valid for both types of systems with
arbitrarily higher-order Lagrangians.

3.1. Unconstrained Systems

First we shall show how quantum mechanics reproduces the Hamilton–Jacobi
equations of classical mechanics in the semiclassical limit h → 0.

The Schrödinger equation for a single particle in a potential V (q(s)) is

i h
∂
(q(s), t)

∂t
=

[
K−1∑
s=0

[
− h2

2

(
∂2

∂q2
(s)

)
+ V (q(s))

]]

(q(s), t),

s = 0, . . . , K − 1. (3.1)

Using the substitution (Griffiths, 1995)


(q(s), t) = exp

(
i S

(
q(s), t

)
h

)
, (3.2)

one can write (3.1) as

−∂S

∂t

 =

[
K−1∑
s=0

[
1

2

(
∂S

∂q(s)

)2

− i h

2

∂2S

∂q2
(s)

+ V
(
q(s)

)]]

. (3.3)

Assuming 
 �= 0, this leads to

−∂S

∂t
=

K−1∑
s=0

[
1

2

(
∂S

∂q(s)

)2

− i h

2

∂2S

∂q2
(s)

+ V
(
q(s)

)]
. (3.4)

Taking the formal limit h → 0, we obtain the classical Hamilton–Jacobi equation

−∂S

∂t
=

K−1∑
s=0

[
1

2

(
∂S

∂q(s)

)2

+ V
(
q(s)

)]
. (3.5)

Thus, in this limit, quantum mechanics reduces to classical mechanics.
Now that we have rederived classical mechanics from quantum mechanics,

our interest turns to quantum mechanics itself .
Equation (3.3) is exact so long as 
 �= 0. One can use this equation and

consider the expansion

S
(
q(s), t

) = S0 + hS1 + h2S2 + · · · . (3.6)
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This is the so-called h, or semiclassical, expansion. Plugging it into Equation (3.4),
we find

−∂S0

∂t
=

K−1∑
s=0

[
1

2

(
∂S0

∂q(s)

)2

+ V
(
q(s)

)]
; (3.7)

−∂S1

∂t
= 1

2

K−1∑
s=0

[
−i

∂2S0

∂q2
(s)

+ 2

(
∂S0

∂q(s)

) (
∂S1

∂q(s)

)]
. (3.8)

and similarly for higher terms in h. The leading equation has only S0, and it is
exactly the same as the Hamilton–Jacobi equation.

The WKB approximation is used mostly for time-independent cases; in other
words, for an eigenstate of energy E. The wave function has then the ordinary
time-dependence:

exp

(−i Et

h

)
. (3.9)

For K-order Lagrangians, the Hamilton–Jacobi function S takes the form

S
(
q(s), t

) =
K−1∑
s=0

S(s)
(v)

(
q(s)

) − Et . (3.10)

Therefore, only S0 has time-dependence (v = 0, 1):

S0
(
q(s), t

) =
K−1∑
s=0

S(s)
0

(
q(s)

) −
K−1∑
s=0

E(s)t ; ; (3.11a)

so that

S1
(
q(s)

) =
K−1∑
s=0

S(s)
1

(
q(s)

)
, s = 0, . . . , K − 1; (3.11b)

while higher-order terms do not depend on time. The lowest term S0 in Equations
(3.7) satisfies the Hamilton–Jacobi equations

E(s) = 1

2

(
∂S(s)

0

∂q(s)

)2

+ V
(
q(s)

)
. (3.12)

The solutions of these differential equations are

S(s)
0

(
q(s)

) = ±
∫ √

2
(
E(s) − V

(
q(s)

))
dq ′

(s) =
∫

p(s)
(
q ′

(s)

)
dq ′

(s). (3.13)

We have used the notation p(s)(q(s)) because these are nothing but the linear mo-
menta of the particles in the classical sense. Once we have known S(s)

0 , we can
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solve for S(s)
1 . Starting from Equation (3.8) and using

∂S1

∂t
= 0,

we find

2

(
∂S(s)

0

∂q(s)

) (
∂S(s)

1

∂q(s)

)
− i

(
∂2S(s)

0

∂q2
(s)

)
= 0. (3.14)

These have the solutions

S(s)
1

(
q(s)

) = i

2
ln p(s)

(
q(s)v

) + constant. (3.15)

Therefore, the general solution of Schrödinger’s equation up to this order is



(
q(s), t

) = exp

[
K−1∑
s=0

[
i

h

(
S(s)

0

) + i
(
S(s)

1

)]]
exp

−i Et

h

(
E = E(s)

)
(3.16)



(
q(s), t

) =
(K−1)∏

s=0

A′√
p(s)

(
q(s)

) exp
(K−1)∑

s=0

×
[
± i

h

∫ √
2
(
E(s) − V

(
q(s)

))
dq(s)

]
exp

(−i Et

h

)
. (3.17)

The overall constant A′ is, of course, undetermined from the foregoing analy-
sis. This solution makes it immediately clear that the present approximation breaks
down when p(s)(q(s)) goes to zero. Here we take the first two terms in the semiclas-
sical expansion because the higher terms do not affect the amplitude A(

→
q ,

→
q̇ , t).

For K-order Lagrangians, the transformation to the N-dimensional case is
achieved by expanding the wave function 
 as


(q(s)i , t) 
(q(s)i , t) =
[

N
�
i=1

K−1
�

s=0
ψ

(s)
0i

(
q(s)i

)]
exp

(
i S

(
q(s)i , t

)
h

)
,

s = 0, . . . , K − 1, (3.18)

where

ψ
(s)
0i

(
q(s)i

) = 1√
p(s)i

(
q(s)i

) .

This wave function represents our main result. It satisfies the following
condition:

Ĥ ′
0
 = 0. (3.19)
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This is obtained when the dynamical coordinates and momenta are turned into
their corresponding operators:

q(s)i → q(s)i ;

p(s)i → p̂(s)i = h

i

∂

∂q(s)i
;

p(s)0 → p̂(s)0 = h

i

∂

∂t
.

3.2. Constrained Systems

For constrained systems with higher-order Lagrangians; the rank of the
Hessian matrix is N − R. Thus, the wave function reduces to


 =
[

N−R
�

a=1

K−1
�

s=0
ψ

(s)
0a

(
q(s)a

)]
exp

(
i S

(
q(s)a , q(s)µ, t

)
h

)
, (3.20)

where

ψ (s)
oa

(
q(s)a

) = 1√
p(s)a

(
q(s)a

) , s = 0, . . . , K − 1.

This wave function represents our main result. It satisfies the following conditions:




H
′
(s)α
 = 0; α = 0, 1, . . . , R, s = 0, . . . , K − 1. (3.21)

These are obtained when the dynamical coordinates and momenta are turned into
their corresponding operators:

q(s)i → q(s)i ;

p(s)i → p̂(s)i = h

i

∂

∂q(s)i
;

p(s)0 → p̂(s)0 → p̂0 = h

i

∂

∂t
. s = 0, . . . , K − 1.

In passing, it is interesting to use the representation


 = A
(
q(s), t

)
exp

(
i S

(
q(s), t

)
h

)
, s = 0, . . . , K − 1.

which is simply the so-called Madelung transformation (Ghassib, 1986). Substi-
tuting back into the Schrödinger Equation (3.1), one can split up the resulting
equation into two real equations by separating the real and imaginary parts.
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The real part leads to the equation

∂S

∂t
+

K−1∑
s=0

[
1

2m

(→
∇ S

)2

q(s)

+ V

(
→
q
(s)

)
− h2

2m

∇2
q(s)

A

A

]
= 0, s = 0, . . . , K − 1.

This is the quantum Hamilton–Jacobi equation. In addition to the kinetic energy
and the classical potential V, the Hamilton contains a new term, the well-known
quantum potential Q:

Q(
→
q
(s)

, t) ≡
K−1∑
s=0

[
− h2

2m

∇2
q(s)

A

A

]
, s = 0, . . . , K − 1.

For constrained systems, the quantum potential can be treated in the same
manner as for regular systems. Clearly, setting Q = 0, one gets back the classical
Hamilton–Jacobi equation. This means that the classical limit can be defined as
the case in which the quantum potential may be suppressed.

On the other hand, the imaginary part gives the continuity equation

∂A2

∂t
+

K−1∑
s=0

→
∇ q(S) ·

(
A2

→
∇ q(s)S

m

)
= 0, s = 0, . . . , K − 1.

Here A2(q(s), t) is the probability density, and the expression inside the parentheses
represents the standard definition of the current density.

4. CONCLUSION

This work has aimed at, first, determining the Hamilton–Jacobi function
S for both constrained and unconstrained systems with arbitrarily higher-order
Lagrangians; and, second, quantizing these systems using the WKB approximation.

We have obtained the quantization of singular systems with arbitrarily higher-
order Lagrangians using the WKB approximation starting from the Hamilton–
Jacobi function S in configuration space under the conditions that the set of HJPDEs
is integrable. The equations of motion are furnished out using the function S.
These solutions are obtained in terms of the time and the spatial coordinates that
correspond to dependent momenta; these are treated as independent variables, just
as the time t.

This is followed by determining the suitable wave function for both types of
systems. In constrained systems, the constraints become conditions on the wave
function to be satisfied in the semiclassical limit, in addition to the Schrödinger
equation.
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